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FREQUENCY PLATEAUS IN A CHAIN OF
WEAKLY COUPLED OSCILLATORS, I.*

GEORGE BARD ERMENTROUT" AND NANCY KOPELL*

Abstract. A chain of n+l weakly coupled oscillators with a linear gradient in natural frequencies is
shown to exhibit "frequency plateaus," or sequences of oscillators having the same frequency, with a jump in
frequency from one plateau to another. We first show that the equations for the coupled oscillators admit an
invariant (n + l)-toms on which the equations have a special form, one in which an n-dimensional subsystem
is approximately invariant. We then show that when the linear gradient becomes too steep to allow
phaselocking, there emerges a large-scale invariant circle in this n-dimensional system which corresponds to
the existence of a pair of plateaus, and whose homotopy class within the n-toms corresponds to the position
of the frequency jump. Also discussed are the effects of anisotropic and nonuniform coupling.

1. Introduction. We shall study a chain of n + weakly coupled oscillators which
are uniformly dose. For much of the paper, we shall assume that the coupling is nearest
neighbor, isotropic (symmetric), homogeneous in k and linear. Thus, the k th oscillator
satisfies an equation of the form

X,-- F( Xk) + eRk( Xk, e) =--Fk( Xk, e)

where SkRm, F: Rm-’->R and (1.1), with e-0, has a stable limit cycle solution of
period 2r/,00. The full equations are

(1.2) X--Fk(Xk)+eD(Xk+l--23"Xk+Xk_l), Xo--O--Xn+2,

where D is an m m-matrix, e << and 3’-0 or 1. If 3’- 1, the coupling is of the kind
associated with diffusion; if 3’-0, .the coupling is of "direct" type used to describe
some electrical interactions.

Let c0k be the frequency of the limit cycle of (1.1)k. By hypothesis, 0k--00+ O(e).
We first show, in 2, that there is an (n+ 1)-dimensional submanifold of Rm(n+l) which
is attracting and invariant under (1.2). This manifold is an (n + 1)-dimensional torus
Tn+l; we prove that variables 01, 02,-..,0n+1 may be chosen on the torus so that, if

k Ok+l--Ok, then the equations for 01 and the {q’k} take the form

(1.3) O;--s +eH(,)+O(e2),

+’k--e[Ak+H(+k+l)+H(--+k)--H(+k)--H(--+k_l)] + O(e2),
).

Here H is 2,r-periodic and eA k --0k+ ak. The O(e2) terms may depend on all the
variables 0l, ,.-.,0. H depends on D, on the form of the coupling and on the
dynamics of (1.1) in the neighborhood of the limit cycles. Note that the equations for
the (k} are, to lowest order, independent of 01. Thus, through O(e), we may treat the
phase space as T’, with variables tl,""" n"
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216 GEORGE BARD ERMENTROUT AND NANCY KOPELL

The results of 2 are rigorous generalizations of calculations made by Neu [1], [2],
Holmes [3], and Holmes and Rand [4]. Neu’s calculations [1] were for a general pair of
oscillators with diffusive coupling; Holmes and Rand [4] computed q/for a pair of Van
der Pol oscillators, also with diffusive coupling. Holmes [3] worked out examples in
which H() sin q. Now sinq is an odd function of its argument. Also, for two coupled
oscillators, H may just as well be odd, since from (1.5) we have that q/= e[A- 2H0(q)]
+ O(e2), where H0 is the odd part of H. However, H need not in general be odd. In {}2
we give examples to illustrate which features of the dynamics or coupling lead to a
function H which is odd. We compute H for A-to oscillations and Van der Pol
oscillations (in the nearly sinusoidal regime) with various kinds of coupling.

The symmetry, or lack thereof, of H turns out to play an important role in the
behavior of (1.4). In this paper, we shall study only the case H odd; later papers will
take up the effects of lack of symmetry. If H is assumed to be odd, the governing
equations immediately become simpler" letting et and dq/d-(1/e)(dq/dt)
(1/e)q/, to lowest order, (1.4b) becomes

(1.5) -flA+KH(q)

where =(tl,"" ",n)t, A’-’(AI,"" ",An)t H()=(H(ql),...,n(n)) and K is a tridi-
agonal matrix with Kii=-2, Ki+i,=K,+ 1. The parameter fl_R has been intro-
duced, so we may consider (1.5) as a one-parameter family of equations with A fixed
and fl measuring the strength of the "detuning."

We prove in 3 that for fl sufficiently small, there is a unique stable equilibrium
point for the n-dimensional system (1.5) which corresponds to "phase-locked" behav-
ior, i.e., all the oscillators move at the same frequency, with fixed (in time) phase
differences between any pair. (For the full (n + 1)-dimensional equations (1.3), (1.4), the
critical point of (1.4) or (1.5) corresponds to a stable limit cycle whose period is the
shared period of the coupled oscillators.) The main result, proved in 3 and 4,
concerns "frequency plateaus" which emerge for (1.3), (1.4) when the stable critical
point of (1.5) disappears. By a frequency plateau we mean a sequence of oscillators
whose frequency is the same; this does not mean that the phase differences within the
plateau are constant in time. It is shown that when the stable critical point coalesces
with another critical point and disappears (as fl is increased), a large amplitude stable
limit cycle for (1.5) emerges (not by a Hopf bifurcation); this can be interpreted to
correspond to the existence of a pair of frequency plateaus with different frequencies.
The homotopy class of this cycle (as a point set within T") indicates the position of the
discontinuity in frequency. For this we need more assumptions on H (it must be
qualitatively similar to sin q) and A which we detail in {}3. The methods used involve
the construction of a large invariant region for (1.5) on which a set of inequalities hold.
These inequalities are reminiscent of those used by Hirsch [5] in his study of coopera-
tive systems. The proof also requires algebraic results about matrices of the form KA
where A is diagonal; these are given in the Appendix.

The existence of the large amplitude limit cycle for (1.5) is done in 3; the relation
of this to frequency plateaus is discussed in 4. Also done in 4 are a calculation of the
size of the frequency jump as a function of the amount of detuning, and numerical
computations showing the existence of further plateaus as the spread of natural fre-
quencies increases. Section 5 contains calculations concerning related models: we con-
sider the effect of anisotropy in the coupling, and a gradient in the strength of coupling.
For these cases, we consider only phase-locked solutions.
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FREQUENCY PLATEAUS 217

Other papers treating phase-locking in coupled nonlinear oscillators are [6]-[11].
References [2], [3], [8], [9] deal with more than two oscillators. Of these, the approach of
Holmes et al. [3], [4], [8] and Hoppensteadt and Keener [9] are closest to ours, using
equations governing phase differences. Hoppensteadt and Keener derive their equa-
tions under the assumptions that each oscillator is a perturbation of a harmonic
oscillator. Their analysis then requires them to make further assumptions about the
algebraic relationship of the frequencies; these assumptions are unnecessary in our
formulation. References [1], [2], [3] noted that if the natural frequencies of a pair of
coupled oscillators are too far apart, the oscillators may lose synchrony. To the best of
our knowledge, there has not yet been a mathematical analysis of the fact that, when
there are many oscillators, the loss of synchrony can be local, i.e., the frequency may be
constant over many oscillators.

This paper was partially motivated by certain phenomena observed in mammalian
small intestine, which consists of layers of smooth muscle fiber. It is known that the
muscle fibers support travelling waves of electrical activity which run from the oral to
the aboral end [12]-[15]. These, in turn, trigger waves of muscular contractions [12],
[13] via high frequency electrical spikes. The spikes, which have much higher frequency,
are considered to be consequences of the slow waves, so we are concerned only with the
slow electrical waves.

The connection with the above mathematics is as follows" If a section of the
intestine is sliced into pieces of length 1-3 cms., each piece is capable of supporting
spontaneous oscillations at a constant frequency, with a wave form that is close to
sinusoidal [15]. (The origin of these oscillations is controversial [13].) Furthermore, over
a substantial section of the intestine there is a linear gradient in the frequency of these
oscillations, higher in the oral end than in the aboral. In vivo, the measured dectrical
activity along the (intact) intestine displays the frequency plateaus discussed in this
paper. (There are usually more than two plateaus.)

In [16]-[20], this system was modelled by a chain of loosely coupled Van der Pol
or related oscillators in the sinusoidal (nonrelaxation) regime, and simulated either
digitally or electronically. These papers showed that, with a variety of different cou-
plings (usually anisotropic), and with gradients in frequencies and couplings, frequency
plateaus can be produced. Such plateaus share with the physiological data the property
that the plateaus lie above the curve of natural (uncoupled) frequencies. (See Fig. 1.1.)
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FIG. 1.1. A schematic representation of frequency measurements in an intact mammalian intestine

top,piecewise constant), and after cutting a 30-cm. segment into 8 slices. Diagram after Diamont and Bortoff
[15]. The positions of the plateaus do not remain constant in time [15].
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218 GEORGE BARD ERMENTROUT AND NANCY KOPELL

This paper is the beginning of an attempt to understand in a more general context the
underlying reasons for the existence and properties of frequency plateaus. For example,
we wish to show that the observations of [16]-[20] can be accounted for by phase
models, with all the relevant information about the oscillators encoded in a set of
2r-periodic functions H (which may depend on k). This first paper is aimed primarily
at the existence of plateaus. There are other aspects of the physiological data and
simulations that cannot be accounted for if H is assumed to be odd and the coupling is
isotropic. In particular, if H is odd, the coupling is uniform and isotropic, the natural
frequency gradient is linear, and fl is small enough that phase-locking occurs, then the
phase-locked frequency is the average of the natural frequencies; if fl is large enough so
there are plateaus, these plateaus must be arranged symmetrically with respect to the
average frequency (not above the curve of natural frequencies). Even if nonisotropic or
nonuniform coupling is allowed, it is shown in 5 that the phase-locked frequency lies
strictly between the highest and the lowest of the natural frequencies. We show in a
later paper [21] that plateaus lying above the curve of natural frequencies can be
derived from a phase model, provided that H is allowed to have a nonodd component,
and n is large. Ultimately, this physiological system should be understood in terms of a
continuum model.

2. Equations on an invariant torus. In this section we show that, for e sufficiently
small, there is an (n+ 1)-dimensional invariant submanifold Tn+l(e) of Rm(n+l) which
is an (n+ 1)-dimensional torus. On T+l(e), the motion is parametrized by phases 0k
associated to each oscillator. We also show that, to lowest order in e, the equations have
a special form which will enable us to analyze their behavior as the amount of detuning
is increased.

It is easy to show that there is an invariant torus T+ l(e) if e is sufficiently small.
For if e--0, the cross products of the limit cycles of (1.1) for each X/ forms such a torus
T+ i. Furthermore, since each limit cycle is exponentially stable, this invariant mani-
fold is "normally hyperbolic," i.e., in a neighborhood of Tn+ 1, trajectories approach
the invariant manifold at an exponential rate. (See [22],[23] for more precise and
general definitions.) It follows that there is an e0 such that, for e_<e0, the invariant
manifold persists [22], [23], i.e., there is an invariant Tn+ l(e) close to T+ 1.

We now show that coordinates 0l, qbl,...,n may be chosen on T+ l(e) so that the
equations for {} have the form (1.4). We first make a preliminary change of varia-
bles:

LEMMA 2.1. Suppose that

(2.1) X’=F(X)

has a stable limit cycle with period 2r/0, where XR" and F: RmR" is C. Then
there exist smooth coordinates OS, YRm- in a neighborhood of the limit cycle of
(2.1) such that (2.1) becomes

(2.2) 0’-oo Y’-L(O)Y+O(IYI)
where the O(I Y]) term may depend on O.

Proof. The basic idea is to use coordinates in a neighborhood H of the limit cycle
that are adapted to certain codimension-1 submanifolds which are known in the
context of oscillations as "isochrons" [24], [25] and more generally as "leaves" of a
"foliation" [23]. These leaves are transverse to the limit cycle and have the properties
that each leaf gets sent onto another leaf under the action of the differential equation,
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FREQUENCY PLATEAUS 219

and that any two points on the same leaf approach each other exponentially as t- o.
It can be shown that there are such manifolds, and that they vary smoothly with points
on the limit cycle [23]. 0(X) is defined by requiring that the motion of (2.1) be uniform
on the limit cycle, and 0 be constant on each leaf of the foliation. (0--0 is chosen
arbitrarily.) Since the flow takes each leaf into another leaf at each fixed time, (2.2)
holds not only on the limit cycle, but in the entire neighborhood. Also, since the
foliation is smooth, 0(X) is smooth. The Y coordinate may be defined more arbitrarily
on each leaf, provided only that Y--0 on the limit cycle and Y(X) is smooth. []

Lemma 2.1 shows that there is a smooth transformation X--G(0, Y) which takes
(1.1), with e 0, into (2.2). Denote the Jacobian matrix by J(0, Y). In a neighborhood of
the limit cycles, J is invertible, so (1.2), k v 1, n + may be written as

( )
’-,o[a(Ok+l, Yk+l) --2"ya(Ok, Yk)["a(Ok-l, Yk-l)] }-

There are similar equations for k- 1, n + 1. By hypothesis,

(2.3a)
(2.3b) )J-(Ok, Y)F(G(O, Y ))- L(O)Yk/O(lYlZ,e)
The right-hand side of (2.3a) may be written as

o:,+eR(Ok, Y,,e)
where

f02R-’( Ok O, e)dOk O( e)

and ,, as stated before, is the frequency of the limit cycle of (1.1),. Let h(Oi, Ok)
denote the 0 component of J- (0,, Y,) DG(Oi, Y) at Y/= 0 Y,. h is 2 r-periodic in each
of its arguments. Also let q,0k+ -Ok and Sk- Yk/e. (The latter change of variables
"blows up" an e-neighborhood of T"+ (e).) Then (2.3) becomes

(2.4a)

(2.4b)

where $.AktOk+l--tOk and the O(e2) terms may depend on all the variables 0,
and (Ski. (Equation (2.4b) is true for k-2,...,n-1. To get the equations for k-1
and k-n, set h(Oo,O)-O-h(O,,+,O,).) Note that, to lowest order, the fight-hand side
of (2.4a, b) is independent of the (Sk}. Thus (2.4) may be thought of as the dynamical
system on T"+l(e). (There is a dependence on {Sk} in the O(e2) term. However, on the
invariant manifold, Sk-Sk(OI,...,0,+ 1), and so the {Sk} may be eliminated.)

Note also that there are two time scales in (2.4a, b)" 0-O(1) in e and ,= O(e)
for all k. Thus, the (0h) form an n-dimensional "slow system" within Tn+l(e). How-
ever, there is not necessarily an n-dimensional submanifold of Tn+ l(e) invariant under

D
ow

nl
oa

de
d 

02
/0

7/
22

 to
 1

28
.5

4.
40

.1
29

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



220 GEORGE BARD ERMENTROUT AND NANCY KOPELL

(2.4). Nevertheless, using averaging theory, the difference in time scales can be ex-
ploited to write equations for the {qk} which, to lowest order, are independent of 0.
Denote by (2.5) equation (2.4) with the expressions 0k+ , Ok+ 2 and 0 k- replaced by
0k + qk, 0k + qk + qk+ and 0k- qk- respectively. Using the fact that 0k tOot + O(e)
and q-O(e) for all k, we may now use the averaging theorem [26]. This theorem
asserts that there is a near-identity change of coordinates such that, in the new
coordinates the right-hand side of (2.5) may be replaced, to lowest order in e, by its
average with respect to over one period. But, by the periodicity of h and the fact that
,/,’ o(e),k

(2.6) tOo f02,Oo

2 o

A similar computation holds for the other terms of (2.5). Define

(2.7) fo2 [h(O+,,O)-vh(O,O)]
We have shown the following:

THEOREM 2.1. There is an (n + 1)-dimensional submanifold T"+ I(E) invariant under
(1.2). Variables 0 l, kl,...,rkn may be chosen on Tn+(e) so that, on the invariant

manifold, ( 1.2) has the form (1.3), (1.4), with H 2r-periodic.
We now explicitly calculate the function H for several classes of examples. The

first has a natural polar coordinate system representation. However, as we shall see, the
natural representation is not the one used in the proof of Theorem 2.1. Consider m--2
and

(2.8) Fk(y)-- ’ --tO (y) D--
tO , d3 d4

where )k--l--(X2-+-y2), tO--tOkq-gO(X2q-y2), 0: RI-+R1, &(1)-O, and tOk--tOo+O(e)
for all k. In the usual polar coordinates (x-rcosO,y-rsinO), X’-F(X) is

r’--r,(rg),

Thus tO(r) is an amplitude dependent angular frequency. The representation used in
Theorem 2.1 has the form 0’-tOk, where tOk is a constant (independent of amplitude).
To achieve this, we make the coordinate change (0, r) (0, r), where 0 0 +/(r) and

g(r)=
?(1_72 )

Again we let Sk be a "blown up" normal coordinate, i.e., rk-1 + eSk. Using trigono-
metric identities, it can be checked that, in Sk, 0k coordinates, (1.2) is

(2.9) O[,--tO,+e[&’(1)Sk+H,(Ok_,,O,)+Hl(Ok+,,Ok)] + O(e2), k-2,...,n,

(2.10)
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FREQUENCY PLATEAUS 221

where

HI( Ok _+1, Ok ) dl sin(Ok +_ ,- Ok) + ( d4 d )sin Ok+ 1C0S0k
"+" ( d,- d4)sinOcosO,+ d2 (d2 + d, )cos2 O,

a,_ os(o _+, o ) + (a, +d)oso +_, oso,
n2( Ok ___1, Ok ) dl cos( Ok +_ 1-- Ok ) +- ( d4 dl )sin 0k sin 0k __+l

-d -(da-dl)sin20k
+d2 sin(0k _+ + 0k) + (d d2 )sin 0k cos 0k _+

(d2 + d )cos0k sin 0k.
Now O---O+’(rk)r--O+et’(1)S’k+O(e2)--O--1/2ef’(1)S’k+O(e) and k-----,+l--
0k. Using (2.9), (2.10) and averaging as before the equations for k, we get

PROPOSITION 2.1. For example (2.8),

(2.11) H(k)-[(dl+d4) g’(1)4 + (d-d:)2
+[(d-d)&’(1)4 + (d+d)2 sink"

Remark. H() is an odd function only when the coefficient of cos(k)-’ vanishes.
This can happen, for example, if ’(1) =0 and d d. ’(1)= 0 implies that (infinitesi-
mally) there is no frequency dependence on amplitude, while da=d if the "diffusion"
matrix D is symmetric. It is interesting to note that the frequency dependence on
amplitude and the nonsymmetry of D may cancel each other to produce a function H
which is odd.

We now consider a chain of coupled Van der Pol oscillators in the almost-sinusoidal
regime, i.e.,

(.1) 2+(x- )2+x=0
with << 1. Using polar coordinates X=rcosO, 2= -rsin0, (2.12) is

(. ,-( o 0)(in 0),

0-- + (1 r cos 0 )(r sin 0 cos 0).

By averaging techniques [26], it can be seen that (2.13) is equivalent to

rr-r V + 0()’ 0- + 0().

Thus, for fixed small, (2.12) is equivalent (up to O()) to a system of the form (2.8)
with the special property that -0. Allowing detuning and coupling, the full equations
have the form:

(.4

2+(X-1)2+ (1 +)X--e[b(2+l--22+2_)
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222 GEORGE BARD ERMENTROUT AND NANCY KOPELL

The terms involving the b, c, d represent, respectively, resistive, inductive and capacitive
coupling. As before, 0k+--cok= O(e). Then H() can be computed as above, and we
get

(2.15) H( ck ) b sin ck + ( c- d )[cosck 1].

Note that, since 0, all the terms of H() come from the coupling, and not from the
frequency dependence on amplitude.

Remark. In [4], Rand and Holmes compute H for a pair of coupled Van der Pol
oscillators, for i fixed and small. Their formulation is somewhat different, but in terms
of our notation, they allow eb and e(c-d) to go to zero at different rates as e--, 0. If the
coupling involves substantial resistance, i.e., if e(c-d)--,O at least as fast as eb (as
e--, 0), then for small e, their result agrees with ours; i.e., to lowest order, H is a multiple
of sin q. (When n 2, the even part of H(ck) disappears from (1.4), so (2.15) is effec-
tively b sin q.) However, if the resistive coupling is significantly smaller than the com-
bined effect of inductive and capacitive coupling, then a more complicated expression
may be obtained which is equivalent to the result of carrying out the computation of
H(q) to order e2, with (c d ) O(1) and b O(e). We note that the same expression is
obtained if one works with oscillators of the form (2.8), since (2.12) has been approxi-
mated by such an oscillator.

3. Existence of a large amplitude invariant circle. We now restrict ourselves to
functions H() which are odd, i.e. H(-) H(), and consider (1.5). Since H is
2w-periodic as well as odd, we have H(0)= H(rr)= 0. We shall assume about H that it is
qualitatively like H=sinq, i.e., that H>0 for 0<q<rr, H<0 for -r<<0, that H
has a single maximum M and a single minimum rn at t and m respectively, that H’ is
monotone increasing from m to 0, and that H’ is convex on (q,,,, 0), i.e. that H"’(q)=/= 0
for qb (era, 0).

LEMM 3.1. For fixed A, there exists o such that, for/</30, (1.5) has 2 critical
points. Of these critical points, one is a sink and n are saddle points having one positive
eigenvalue and n- eigenvalues with negative realpart.

Proof. The critical points of (1.5) are solutions to

(3.) /() =/C- l(-a).

Equation (3.1) has a solution if every component of K-l(--/3A) lies between m and M.
Let

#o max{ #lm <_K- ( A) <__M

If/3 </30, then for each there are two distinct solutions q? (/3) to H(q)-K-1(_/A)i
with Iq,l<cr; q,- denotes the solution with smaller absolute value. (Note that H’(q/-) >0
and H’(q+)<0. See Fig. 3.1.) Thus there are 2 critical points. Let i=i([), i-- 1,’" .,n,
denote the critical point whose kth component ik(/3) is -, kg=i and ;i- q+;/j0(/3) is
the critical point with k th component 0k(/3)= q,- for all k. We will show that/J0 is a
sink, and is a saddle having exactly one eigenvalue with positive real part.

The linearization of (1.5) around one of the critical points/j has matrix KH’(6)
where H’() denotes the nXn diagonal matrix whose kth entry is H’(ik ). Now if
J=0, then the kth entry is H’(ok)=H’(-)>0 for all k. By Proposition A.1 (see
Appendix), the eigenvalues of KH’(/j0 ) all have negative real parts, so/J0 is a sink. If
/J=5 for some i, then H’(u)<0 but H’(ik)>O for k4=i. Thus, by Proposition A.3 i
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FREQUENCY PLATEAUS 223

H()

FIG. 3.1. The two possible choices k: for the ith component of a critical point of (1.5).

is a saddle having exactly one eigenvalue with positive real part. (Note that these
stability properties of the critical points cannot change as/3 increases unless H’(ik(/3))
changes sign for some i; this does not happen for fl< fl0.)

We now further restrict our attention to a linear gradient in frequency; such a
gradient is equivalent to a constant vector A for (1.5). The vector -fl(1, 1,..., 1)
corresponds to a linear decrease in frequency for increasing k, as in the measurements
on mammalian intestine. For simplicity, we assume n is odd, so there is a unique
"middle" phase difference qj. The main result is as follows. We shall later show that the
theorem implies the existence of a pair of frequency plateaus, with a jump in frequency
between thej and (j+ 1)st oscillators.

THEOREM 3.1. Suppose that A- -(1, 1,..., 1)t and that n 2j- 1 in (1.5). Then for
fl <- flo, flo- fl sufficiently small, the closure of the two branches of the unstable manifold of
forms a smooth attracting invariant circle which is homotopic to the circle qk--O, k vj,

0 <_ ck2 <_ 2 or. This invariant manifoldpersists for fl> flo, fl flo sufficiently small. (See Fig.
3.2.)

k kj

SINK

o

SADDLE .’k

- 0 r

FIG. 3.2. Schematic representation of the dynamics of (1.5), with a unique sink o and a saddle j which
coalesces with Io as fl flo. The two (one-dimensional) branches of the unstable manifold ofj form a smooth
invariant circle.
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224 GEORGE BARD ERMENTROUT AND NANCY KOPELL

Proof. We require several lemmas:
LEMMA 3.2. Assume the hypotheses of Theorem 3.1. Then
(i) ++, (fl)<0 Vk and all fl <- flo.
(ii) m<K-(-flA)<O Vkvj, fl<-flo. For k=j,
(iii) The eigenvector vj. of the unique positive eigenvalue of tj satisfies sgnvj-

sgn vjj Xlk 4=j and all fl <_ flo.
Proof. (i) The critical points are solutions to (3.1) and K-(A) has k th component

k(n + k)/2. Thus all the components of K- l( flA) are negative. Since H()>0 for
0<<r and H()<0 for -r<<0, the solutions to H()- -ilk(n+ 1-k)/2, with

I1<r, are negative.
(ii) If n-2j- 1, then k(n + 1- k)/2 takes its largest value for k-j. (/30 is then

defined by rn flo J(J+ 1)/2.)
(iii) This follows from Proposition A.5 (see Appendix), as soon as we establish that

H’(j) has the form diag(al,a2,...,aj_l,aj, aj_l,...,a), where a>0 for kvj, aj<0,
al>a2>...>aj_, and a_l+a+l<2a for k-2,...,j-1. Now H’(j) is a
diagonal matrix whose k th entry is H’(#), where j,, the k th component of jj, is
h-(fl) for kq=j and -(fl) for k=j. ((fl) are defined by H()=K-l(-flA)
-ilk(n+ k)/2.) Thus a-a,+_,. The signs of the a follow from the definition of
/j. Furthermore, k(n+ l-k)/2 is an increasing function of k for k<j, so
increases with k (i.e,-- -Iq’-I decreases with k). Since H’ is monotone increasing on
[oh,,,0], this implies that a>a2>... >aj_. Also, the convexity condition for H’
(i.e., H’"v 0 on (,,,, 0)) implies that (ak_ +ak+l)/2<ak.

From Lemma 3.2(ii), we see that I+--I-0 as/3--,/o. Thus, as /-’/o, all
critical points coalesce in pairs, and for fl>flo there are no solutions to (3.1). (Recall
that each of the 2 critical points has as its k th component either - or -; thus each
point is matched with another point with which it agrees except at thejth component.)
The critical point j has the distinction of being the one that coalesces with the sink
its components agree with those of0 except for thejth, with oj-Cj- and jj-q.

We shall focus separately on the two branches of the unstable manifold of j,
which we shall refer to as the left or right branch, depending on whether the jth
component vjj of the tangent vector is negative or positive. We shall show, for flo-fl
sufficiently small, that both of these have the sink in their closure, and hence form an
invariant circle. The next lemma deals with the fight branch. This is the easier part,
since for flo-fl small, j and 0 are close, with 0 to the right of j.

LEMMA 3.3. For flo--fl sufficiently small, the right branch of the unstable manifold of
lj contains 1o in its closure. Furthermore, at to this manifold is tangent to the eigenspace of
the least negative eigenvalue ofKH’(o).

Proof. o and coalesce as fl flo. The techniques of [27] show that, under certain
hypotheses, this implies that for fl0- fl sufficiently small, there is a trajectory joining 0
and j. The unstable manifold of jj is one-dimensional, so that trajectory must be the
unstable manifold of j. It follows from the construction of this trajectory that its
tangent at o(fl) is the eigenvector of the unique eigenvalue of KH’(o) which tends to
0 as fl--, flo-

The hypotheses on (1.6) needed to apply the technique of [27] are those of
[27, Thm. 2.2]" we write (1.5) as

(3.2) (h-KH’(lo)(Ck-Oo)+(fl-flo)A+Q(ck-ao,-ao)+p
where /o-O(flo)-(flo) is the saddle-sink at the critical value of fl, Q is a vector-val-
ued quadratic form containing the terms quadratic in -/to and independent of fl, and
t9 o(/3 flo, leo -/to12). Then we must have
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FREQUENCY PLATEAUS 225

(i) KH’(ao) has rank n- 1.
(ii) [KH’(/to),A has rank n, where [P,Z] denotes the n(n+ 1)-matrix formed

by adjoining the n-vector Z to the n n-matrix P as the last column.
(iii) [KH’(/jao), Q(V, V)] has rank n, where V is an eigenvector of the zero

eigenvalue of KH’(/ao) and Q(V, v) is the n-vector obtained by evaluating
the quadratic form Q on the vector V.

Now (i) and (ii) follow from (i) and (ii) of Proposition A.2. To establish (iii), we
note that V=(Vl,-. ",t)n) with vk-O, kvaj, and v.- 1. Hence Q(V, V) contains exactly
those terms depending only on ,. (and not qk,kvj). In particular, there are no such
terms in the k th equation of (3.2) with kvj, j- 1. For k-j--+ 1, the k th coordinate
Q(V, V)k of Q(V, V)is 1/2H"(q]-(flo))(qj-q]-(flo))2;

Q( V, V )j H"( dpj- ( flo ) ) ( dp/ dp}- ( flo ) ) 2

Thus Q(V, V) is a multiple of Z-(z,’",zn) with z/--2, zj_-z/+-l, Zk--O,
k #:j, j--+ 1. Then (iii) also follows from (ii) of Proposition A.2.

We now turn to the left branch of the unstable manifold of j. For fl near fl0, the
,hi component must change by nearly 2r before entering the sink 0. Thus we shall need
estimates on this branch that are not local. These estimates are contained in the
following: Let ok H(q) H(q;+ 1)"

LEMMA 3.4. Let R--{(dl,’’’,n)ldn+l_k--k Vk; ;k<fm, kvj, n(j)>
H(), j<0, H(qk)<_H(tkk+l)+Ok, k<_j-1}. Then the left branch is contained in R.
All trajectories which start in R tend to the critical point to as

Proof. We shall show that (i) the above statement is true for a neighborhood of
(i.e.,jjR, the closure of R, and the left branch points into R), and (ii) R is invariant
under (1.5) for t>0, with all trajectories tending towared
-(1, 1,. ., 1) the invariance of (1.5) under ’kon+ 1-k implies that the points on the
one-dimensional unstable manifold of./j satisfy Cn+ l-k--Ck for all k. Furthermore, on
the (initial piece of the) left branch, Cj<0 by hypothesis, and k>0 kvaj by Lemma
3.2. Since qk--q-(kvj) at the critical point, we have -<k<’M (kvJ); also j<0
implies H(,)>H(;) H(+). (See Fig. 3.3.)

To finish (i), we have left to show that

(3.3) H(,kk)<H(,kk+)+Ok, k-1,...,j-1,

along the left branch of the unstable manifold, and in a neighborhood of j. By
definition, H(k) H(k+ )+k at the critical point. Thus, it suffices to show that

nt(Clk)knt(tlk+l)k+l, k-1,...,j-1,

along this part of the unstable manifold. Equivalently, we may show that

(3.4) akt)jkak+lt)j,k+l, k- 1," ",j- 1,

where ak--H’(-), kC:j, aj-H’(f), and (vj,,...,vj,,,)-vj is the eigenvector of the
eigenvalue )t>0 of KH’(/j.). But the {ak} and {vjk } then satisfy the hypotheses of
Proposition A.5, so (3.4) holds.

We now go to (ii). The relationship +l-k=k for all k is invariant under (1.5) if
A-- --(1, 1,..., 1)t, SO we shall assume it. We first show that a trajectory cannot leave R
through the boundaries Ck=- or Ck=M, kj. The vector field (1.5) does not cross
k t for any k. For at k ’,

+k-- --+H(k-l )- 2M-+- O(Clgk+ 1);
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226 GEORGE BARD ERMENTROUT AND NANCY KOPELL

(a)

p < <
k k W

H(o) (b) H()

H( > H(’)

(c) H() (d) H()

k+l k

FIG. 3.3. Some of the constraints on the {k} in order that tk@R: (a) q- <qk<qm; (b) H(epj)>H(ck-);
(d) H(tkk)<H(ckk+l)+ok, where ok is defined as in (c).

since H(k-+ l) M, k<0. The surface k--k- can be crossed by the vector field, but
not inside R. For

’k-- --/3 + H(qk_ ,)- 2H(qk) +H(qk+ l)"

The right-hand side of (3.5) vanishes at all critical points. If q,-__+ < k--+ <(DM, we have
H(qk+_l)>H(q-+_l); SO if we also have k--q-, then qk>0 and the vector field points
into R. Note that this argument works even if k-j--+ 1, because all that is needed is that
H(qk-+ l) -> H(___ l). Now on the surface qk-q-, we may have -0 at some time 0,

i.e., if q,_+ -q-__+ (j+ if k--+ =j). But

(3.6) +k+t-- --fl+H(Ckk)--2H(Ckk+t)+H(Ckk+2)

and H(qg+2)_>H(-+2 ). Hence, if qk--q)- and (Dk+l--(#l (; if k+ l=j), we have
k+l>0 (SO H(thk+l)>H(q-+l) for t>to, t--to sufficiently small) unless H(q+2)-
H(q-+2 ). Following this argument, we conclude that unless qk-q- for all k=/=j and
qj- qj+, even if k--0 for some time t, we will have q- _<qk for succeeding times.

We next show that trajectories may not exit through surfaces of the form

(3.7) H(ePk)--H(qk+,)+ok, k- 1,... ,j-- 1.
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FREQUENCY PLATEAUS 227

For suppose that (3.7) holds for some k at some 0. Then (3.5), (3.6) become

(3.8a) -(3.8b) ,+,- -+o,-H(q,+,)+H(ck,+).

We now use the inequalities (3.3) for k +- 1. These imply that

(3.9a) kk <--fl--o,+Ok_,, k- 1,... ,j- 1,

(3.9b) k+l>_--fl+Ok--O,+l, k- 1,... ,j-2.

But (3.7) and hence (3.8) hold at the critical point/jj, where k-,+ 1-0. Inserting the
components of jj. into (3.8), we get that

fl-o, + o,_ -0- fl + o,--ok+

Thus (3.9)

+_<0, +k+_>0, k- 1,. .,j-2.

This implies that, even if (3.7) holds for some t, the trajectory does not exit R through
the surface (3.7) with k- 1,... ,j- 2. For k=j- 1, the deductions from (3.8a), (3.9a) are
still valid. We replace (3.8b), (3.9b) by

(3.10)

-fl+2%_.

As be.fore, by inser.ting =j into (3.10) we see that the right-hand side of (3.10) is zero,
i.e., q,j=0. Since qj__<0, we have that the trajectory does not exit R through the
surface (3.7) with k=j- 1.

Trajectories may also not exit through the surface

(3.11) O- fl+H( qj_ ) 2H( qj ) +H( qj+ )
along which +j-0. For we have just seen that (3.1 l) is equivalent to (3.7) for k=j- l,
and that a trajectory may not exit through this surface.

Finally, trajectories may not exit through the surface qj-q,j+ or q,j=qj-, the
boundaries of/-I(+j)>H(glf--). Atj:gl=gl; qj=q+ since +,<0, +j must decrease monotonely,
and so cannot pass through Also, qj cannot decrease past q,j.-q- 2r. For at

q’J q’7 (mod 2r),

(3.12) +j- -fl+ 2H(,j_,)- 2H(,7).
Since the right-hand side of (3.12) vanishes at the critical point, and H(j_)>H(7_ l),
the right-hand side of (3.12) is ->0 at j=+j- (mod2r). But j_<0, so trajectories
cannot reach j-j- (mod 2rr) unless j_ =.j-_ . Furthermore, by (3.5) with k=j- 1,
j q,j- (mod 2r)., and q,j_ 7- , we have j_ >0 unless g_2 7--; for later times,
this implies that j>0, and so contradicts j_<0. Hence j-2-j--2-A similar argument
shows that if J- q’7, then-- for all k. Thus trajectories of R do not pass through
J (])7 2r, but rather tend to o as + . V]

Lemmas 3.3 and 3.4 together show that the two branches of the unstable manifold
of }j form an invariant circle. We next show that the circle is smooth. Since (1.5) is C,
so is the unstable manifold [23]; thus, smoothness need only be proved at }o where the
branches join. We know from Lemma 3.3. that the right branch approaches 0 tangent
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228 GEORGE BARD ERMENTROUT AND NANCY KOPELL

to the (left branch of the) eigenspace of the eigenvalue ,0 which is closest to zero. In
such a circumstance, the degree of contact of the trajectory with the eigenspace is
bounded below by the ratio 1/,0, where l is the next smallest (in absolute value)
eigenvalue of (1.5) at 0; this ratio goes to o0 as fl- fl0. Thus, to prove that the
invariant circle is smooth at 0 (with arbitrary smoothness for flo-fl sufficiently small),
it suffices to prove

LEMMA 3.5. The left branch of the unstable manifold of enters o tangent to the
(right branch of the) eigenspace of the eigenvalue o.

Proof. Generically, trajectories approaching a sink do approach tangent to the
eigenvector of the least negative eigenvalue. The exceptional trajectories approach
tangent to the span of the remaining eigenspaces. We shall show that trajectories of R
are not exceptional.

.By Lemma 3.4, trajectories in R satisfy qbk>qb- (kvj), where.qb- is the kth
coordinate of/J0; hence, as a trajectory in R approaches 0, we have qbg<0 for all k.
Now 0 is a hyperbolic critical point, so trajectories near it behave like those of the
linearization of (1.5) around 0. Since trajectories in the eigenspace of a pair of complex
eigenvalues oscillate around the critical point, and we have <0 for all k, the
trajectories in question must in fact approach 0 tangent to the span of the eigenspaces
of the remaining (real) eigenvalues. Because the real eigenvalues are ordered, trajecto-
ries of the linear system approach tangent to exactly one eigenspace, and, furthermore,
to an eigenvector within that eigenspace. Thus, to rule out that trajectories of R are
exceptional, it suffices to show, for any real eigenvalue ,=0 and associated eigenvec-
tor Z---(Zl,.. ",zn) that the z’s cannot all have the same sign. (Sgnz----sgnz for all k
is necessary if we are to have k<0 for all k.) But the linearization of (1.5) around 0
has the form KA where A=diag(a,a2,...,a) with a>0 (kvj), a+_=ag. For
fl=flo, a2=--H’(ck2(flo)) =0, so the result follows from Proposition A.6. For fl-flo
sufficiently small, it follows by continuity.

To finish Theorem 3.1, it remains to show that the smooth attracting invariant
manifold persists for fl> flo, fl-flo sufficiently small, and that the circle is homotopic
to k=0 for all k vj. To prove the first assertion, we perturb (1.5) around/3--flo. For
the invariant manifold to persist and be C, a certain "Lyapunov-type number" must
be < 1/r [22]; this number measures the ratio of the asymptotic (exponential) rate of
contraction on the manifold to that of the asymptotic rate of approach to the manifold.
This number is determined only by the to-limit set on the invariant manifold, which, for
(1.5) fl= fl0, is the unique sink-saddle. For this case, the tangential contraction rate
tends to zero as fl 0 from below, but the normal contraction rate stays bounded
away from zero. (Equivalently, only one eigenvalue of the linearization at 0 tends to
zero as the sink and saddle coalesce.) Thus, the invariant manifold persists for fl> fl0
and can be made arbitrarily smooth by taking fl-flo small.

To see that the invariant circle is homotopic to the circle qbk--0 for all k vaj, we
recall that, along the left branch of the unstable manifold of/., we have qb- <g<,
kj. Also, the right branch is arbitrarily small for flo-fl small. Thus, as qb. changes by
2r along the closure of the two branches, stays in a neighborhood of qbg--0 having
length less than 2 r. It follows that the closure of the trajectories can be deformed into a
circle for which 0, for all k =/=j. U]

Remark. The attracting invariant circle of (1.5) (or equivalently (1.4b)) corresponds
to an attracting 2-dimensional torus for (1.4), with variables 01 and qb2. The dynamics on
this torus is an O(e2) perturbation of an uncoupled flow, with 01(t ) satisfying O-0 +
eH(ck) and qb(t), .(t) the values along the (slow) limit cycle of (1.5), written in the
original time variable t.
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FREQUENCY PLATEAUS 229

4. Frequency plateaus. In {]3, we proved the existence of an attracting invariant
circle for (1.5) on Tn. We now show why this circle corresponds to a pair of frequency
plateaus with a break between thej th and (j+ 1)st oscillators. (Recall that n + -2j.)

The "frequency" of an oscillator coupled to others requires a definition; one
reasonable definition is

(4.1) lim forO
over some trajectory of (1.3), (1.4), provided that (4.1) converges. Note that this
definition yields O’ if O’ is constant, and is, a priori, dependent on the trajectory. To
compute (4.1) requires going to the full equations (1.3), (1.4). However, to lowest order,
the frequency difference

(4.2) lim f0T’
can be computed from trajectories of (1.5). For any trajectory in the basin of attraction
of the limit cycle of (1.5), (4.2) reduces to

To
where To- To(r) is the period of the limit cycle, and the integration of k is done along
the limit cycle. By the fundamental theorem of calculus, (4.2) may be written as

+/-
To

where k(’) is the covering map of O,(*) (i.e.,values of ,(-) are not identified
mod2r). It was shown in {}3 that the invariant circle is homotopic to the circle
k=/=j, 0_<Oj_<2r. Thus k(To)--Ok(To), k=/=j. (We may assume that k(0)--Ok(0) by
choice of covering map.) But 0k(T0) 0k(0) by the periodicity of O along this solution.
Thus (4.1) vanishes for k=j, i.e., for <_k<_j, the frequency of the k th oscillator is
independent of k; similarly, this is true for j+ <_k<_n. However, for k=j, we have
j(To) j(0) + 2r. This implies that the jump in frequency between the (j+ l)st +jth
oscillators is 2re/To (in ordinary time).

On each of the two plateaus, the phase differences Ok are periodic in time rather
than constant in time. That is, the oscillators remain phase-locked "on the average"
rather than at every instant; some authors refer to this phenomenon as "phase-trap-
ping" [28]. Furthermore, the frequency on each of the "plateaus" is not exactly
constant, for (1.5) are valid only up to O(e) (in the scaled time, or O(e2) in the original
time scale). For H=sinO, plateaus emerge when fl>flo=2/j2=8/(n+ 1)2. This im-
plies that the total change in frequency from oscillators to n+ 1, for flflo, is
neflo-Sen/(n+ 1)2- O(e,). Thus, for a fixed total change in frequency, the larger the
n, the harder it is to phase-lock. This contrasts with a nonodd function H, e.g.
H=sinO+i[cosO-1] for which the total change in frequency just prior to loss of
phase-locking is O(e), but does not go to zero as n-o o [21 ].

To understand how the size of the frequency jump varies as fl increases, we first
note that T0-o oo as fl fl0. Furthermore, we claim that TO varies like 1/fl-flo. For
consider the phase-locked solution (-) to (1.5), r= fl0, and choose a small interval I
around the unique critical point. For fl-flo sufficiently small, the large interval Sl- I
is traversed in a finite amount of time (bounded above independent of fl). Within I, a
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230 GEORGE BARD ERMENTROUT AND NANCY KOPELL

fl-dependent coordinate k may be chosen so that the equation takes the form -ka+
,(fl) where ,(fl0) 0, ,’(fl0)> 0. If a, b> 0, the time it takes k to go from a to + b is

-l[tan ()=b- -0( ).P /1 k-- fl--fl0
Since the time it takes to traverse I dominates the finite time to cross S1- I, we see that
7"0- #0 as #ft.

The above computation shows that, as fl fl-, the period TO passes continuously
to + oo from a finite number. Thus the jump 2rr/To in frequency between the two
plateaus changes continuously as fl is varied and tends to zero as fl fl-. In particular,
there need be no rational relationship between the frequencies of the two plateaus. The
calculation also suggests at first glance that the frequency jump is never piecewise
constant as fl is changed (for fl-flo small). However, this last conclusion is suspect: as
mentioned above, the calculations are accurate only up to O(e2) (in the original time
scale). For fixed e small and fl tiff, the effects of the nonzero e could lead to piecewise
constancy of the frequencies over some (small) intervals in ft.

In Fig. 4.1 we show numerical calculations of equations (1.5) for/3 near/30 and a
larger value of fl, i.e., a steeper gradient in natural frequency. Note that more plateaus
emerge. We conjecture that when there are k+ plateaus, there is a k-dimensional
subtorus T* of T corresponding to k degrees of freedom at the jumps. It is less clear
how to analytically define the frequencies on these plateaus.

2O (a)

uncoupled

coupled

\

\

20
uncoupled

%,

(b)

coupled

10 10
Oscillator # 32 Oscillator / 32

FIG. 4.1. Frequency vs. k for k: 10/31 +8[sin,/,,+l-2sinqk+sinq,_ ] for (a) 8=32, (b) 8: 18,.

Note that decreasing 8 and leaving thefrequency difference 10/31 the same is equivalent (under a change of time
.scale) to increasing the frequency difference.

5. Nonuniform or nonisotropic coupling. In this section we consider some of the
effects of relaxing the hypotheses that the coupling be isotropic and uniform; we still
assume that only nearest neighbors are coupled, and that the coupling is weak.

5.1. Nonisotropic coupling. In the previous sections, we assumed that adjacent
oscillators have symmetric influences on one another. Suppose instead that the forward
coupling has a constant (independent of k) ratio a to the backward coupling (see Fig.
5.1.a). The equations for the , (with H odd as before) then have the form
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FREQUENCY PLATEAUS 231

(5.1) 1---fl+H(4)2)-(et+ 1)H(q,),
h,- --fl+H(4)k+l)--(a+ 1)H(q)k) + aH(q),_,), k-2,. .,n-1,

q,,=-fl-(a+ 1)H(q,)+aH(q),,_l).

These equations reduce to (1.5) when et= 1. Note that et> implies that forward
coupling is stronger and a< means backward coupling is stronger.

(a) (b)

k

ik+

k

FIG. 5.1. (a) Nonisotropic coupling. The forward coupling has a constant ratio t to the backward coupling.
(b) Nonuniform coupling. There is a gradient in coupling strength, e.g. the diffusion coefficient associated with
pair of cells varies with k.

PROPOSITION 5.1. Let Yk H(dpk ). Then the criticalpoint of (5.1) satisfies

(n+ 1-k+ka"+’-(n+ 1)-g)
ft.(5.2) Yk-- (1- a)(1-a"+1 )

Proof. Insert (5.2) in (5.1) and check.
Once we know the phase-locked solution of (5.1), we may compute the frequency

of entrainment from the first equation of (1.4)" when there is phase-locking, the
frequency is ik for any k, and

(5.3) t w, + eH(q, ) + O(e2)

=, +e [n(ct--1) +et(1--et")] fl+O(e2).
(1--a)(1

(For a= l, (5.3) reduces to 0 to-enfl/2, the average of the frequencies. (5.2) reduces
to y, ilk( n + k)/2.)

Figures 5.2 and 5.3 graph yk vs. k for several et, and/li vs. ct when n-9 and n- 29.
We see from the formulas and the pictures that one effect of e.g. increasing et is to skew
the peak of the graph of Yk VS. k toward the higher k (lower frequency) end. thus, when
fl is large enough that phase-locking is no longer possible, we would expect a break in
frequency to occur at the lower frequency ezd. Changing et also changes the frequency
of the phase-locked solution. For example, if a> 1, then for n large the frequency is
close to, but less than, 0. Figure 5.4 shows a pair of graphs of frequency vs. k for
frequency gradients sufficient to form plateaus. Note that the plateaus are not symmet-
ric with respect to average frequency.
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232 GEORGE BARD ERMENTROUT AND NANCY KOPELL

-H(k (a)

0 9 15 29

(b)

FIO. 5.2. The graphs of--H(dPk) vs. k for various a. (a) n=9, (b) n=29.

FREQUENCY

n=29

6)1 +

6)n
a=l 8

FIG. 5.3. The frequency of the phase-locked solution as a function of the amount of anisotropy, n-9 and

n-29.

2O

coupled

(a) (b)

20
coupled

U_

uncoupled uncoupled

10 10 "
Oscillator 32 Oscillator # 32

Fie. 5.4. Frequency vs. k for anisotropic coupling, equation ,--10/31 /[.8sinq,,+- 1.8sing,k +
sin q,,_ ], with a) 8 24 and b) 8 10. The forward coupling is stronger, and the plateaus are shifted upward.
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FREQUENCY PLATEAUS 233

5.2. Nonuniform coupling. We now assume that the coupling is isotropic, but
varies with k. That is, we suppose that the coupling is diffusive, but that a different
diffusion coefficient is associated with each pair of oscillators. (See Fig. 5.1.b.) The
phase difference equations now take the form

(5.4) k- --fl+lZk+lH(hg+l)--ElzH(hk)+g-H(-),
H(-o)-O-H(n+l).

The critical point of (5.4) may easily be found: If we let wk-tzH(), then, at
phaselocking, the w satisfy

O-a+KW
where A----(1, 1,’-’,l)/, W--(w,-- ",w,,) and K is as in 3. Hence, as before, w=
-flk(n + -k)/2, so the critical point is given by

(5.5) H()- -ilk(n+ l-k)
2/Xk

It can be seen from (5.5) that a gradient in coupling changes the value k0 of k at which
maXkH(dPk ) occurs. (If /x(x) is monotone increasing (resp. decreasing), k0 decreases
(resp. increases).) This suggests that if fl is increased sufficiently to prevent phaselock-
ing, and a pair of plateaus results, then the break will be in the high frequency range for
/x(x) increasing, and low frequency range for/x(x) decreasing.

The frequency of the phase-locked solution is computed from

From (5.5), we see that H(4,) is independent of the coupling coeffients (g}, so that
the frequency is the same as for uniform isotropic coupling, i.e./l--enfl/2.

5.3. Nonsymmetric coupling function H. Finally, we give a few simulations (Fig.
5.5) to show an effect of allowing H() to be nonodd. Note that if H()-sin((/)+ (I)o)
for (I)o>0, the plateaus may lie entirely above the line of natural frequencies.

2O

(a)

coupled
2O

O

g

uncoupled

,,
32

(b)

coupled

10
Oscillotor # Oscillotor /

uncoupled

32

FIG. 5.5. Frequency vs. k for H() sin(+ (I)o), (I)o>0. (a)k 10/31 + 14[sin(bk+ +.2)--2sin(bk +
.2) + sin((hk_ +.2)]. (b) k 10/31 + l[.2sin(k+ +.4)-- 1.2sin(g,k+.4) + sin(k_ +.4)].
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234 GEORGE BARD ERMENTROUT AND NANCY KOPELL

Appendix. We wish to prove some results about eigenvalues and eigenvectors of
matrices of the form KA, where K is the nn tridiagonal matrix with Kii--2,
Ki,i+ Ki+ l, and A is a diagonal matrix A diag(a l, a 2," ", a )-

PROPOSITION A. 1. No eigenvalue of KA is pure imaginary. If a,>0 for all k, then all
eigenvalues ofKA have negative real parts.

Proof. KA is a tridiagonal matrix with (KA)ii- 2ai, (KA)i,i+ ai/ l, (KAi+ l,i)
-a. By the Gershgorin theorem [A1], any eigenvalue of KA must satisfy

(A.1) IX + 2akl<-- 2lakl
for some k. Since the ak are real, (A.1) rules out pure imaginary eigenvalues. If ak>0
for all k, then (A.1) implies that Re,_<0. Now Re,-0 can happen only if , is pure
imaginary, or if ,-0. But det(KA)-detA- detK:/=0, so :/=0 and Re<0.

PROPOSITION A.2. (i) Suppose that aj-- 0 for somej, ak :/: 0 for k :/:j. Then there exists
a unique zero eigenvalue ofKA.

(ii) Let [KA,Z] denote the n(n+ 1)-matrix obtained from KA by adding the
n-vector Z as the last column. If {ak} is as above, then [KA, Z] has rank n for Z--
(l, 1,..., 1) and Z-(z,. ",Zn) with zj- -2, Zj/I--Zj_ and zg-O, k:/:j,j+-- 1.

Proof. (i) Det(KA)-detK.detA-0, so KA has a zero eigenvalue. It can be
checked by direct computation that KA has a unique null-vector V-- (Vl,- -, vn), with

v-1, vk-O, k:/:j. (The equations for the {vk} split into two systems for Vl,...,v_
and Uj_I, L3j/I, I)j/2,’’’,V respectively. The first has v=-.- =vj_-0 as its only
solution; using V_l-0, the other system has vj+=.-. =v,-0 as its only solution.)
Furthermore, if W is the unique null-vector of (KA)t, it is easy to show that W:/: 0, and
hence V. W:0. This implies that KA has a simple zero eigenvalue.

(ii) The rank of [KA, Z] is the dimension of the span of its columns. Since the k th
column of KA is ak times the kth column of K, the rank of [KA, Z] is the same as that
of [K/., Z], where I is the identity matrix except for the jth column, which is zero. To
show that [KI, Z] has rank n, it suffices to show that W-Z:/:0, where W--(w,..-, w,)
now denotes the null-vector of (K/.)t. Thus Wl,..-, wn satisfy the equations

--2W -k W2--0
Wk_ 2Wk -l- Wk+ O

wn_ 2w. O

with thejth equation omitted. From (A.2), we see that w determines w2,..., w.; indeed,
(A.2) implies that wk=kw for k<_j. Similarly, w determines w,...,w_. It follows
that the {w,} all have the same sign, and so W- (1, 1,.-., 1) v 0.

To see that IV. Z 0 for z.- 2, z_ zj+ 1, z,-- 0, kj, j--+ 1, we note that
IV-Z=0 implies that (A.2) is supplemented by the jth equation w._l-2W+W.+l =0.
But the full set of equations k= 1,..-,n of (A.2) is the system KW-O. Since K is
nonsingular, and IV is nontrivial, this is impossible.

PROPOSITION A.3. Suppose that ay<0 for somej and a>0 for all k :/:j. Then there
exists a unique eigenvalue ofKA with a positive realpart.

Proof. We define a path K between KA and KA, where A--diag(al,a2,...,
lal," ",an) as follows: K=KA except for thejth column, and (K)i=(KA)i. Thus
K_=KA and K KA. The only value of " for which detK=0 is ’--0. By Proposi-
tion A.2, K has a simple zero eigenvalue at ’-0. Since, by Proposition A.1, all
eigenvalues of K, ’<0 have negative real part, then for ’>0, K must have a unique
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FREQUENCY PLATEAUS 235

positive eigenvalue. Since K has no pure imaginary eigenvalues for any ’, this is the
only eigenvalue with positive real part.

The comments of Charles Johnson were helpful in proving the following:
PROPOSITION A.4. Assume that A diag(a,. .,a2_ , -a2,a2+ ,. ",an), with n+

-2j, ak>O for all k. Then the unique positive eigenvalue h ofKA satisfies X<_2a2.
Proof. Instead of KA, we shall consider B-D-KA, where D-

diag(d,d2,...,d2_l, 1,d2+,,.-.,d,), with di-(a2/ai. B is a tridiagonal matrix with

Bii---2ai, Bi,i+-Bi+,i-/aiai+ i- 1,...,j--2 and i=j+2,...,n. The 3 3-matrix

Bik,j- <i, k<j+ 1, is

(A.3) aj laj 2aj /ajaj+
0 --ajaj+ --2aj+

To get the estimate A<_2aj, we shall estimate the spectrum of C-1/2(B+Bt), and
then relate this to the spectrum of B. Since B is symmetric except in the 3 3-block
(A.3), B C outside of that block. Cik, j- <i, k<j+ 1, is given by the 3 3 diagonal
matrix diag(--2aj_l,2aj, --2aj+). Thus C splits into the direct sum of two (j-1)
(j-1)-matrices Ct, C2 and the 1-matrix with entry 2a2. Thus the spectrum of C
consists of 2a2 plus the spectrum of the Ci. We now show that the spectrum o(C) of Cl
is entirely negative. Let U=(u,...,uj_). Then

j--I j--2

{ C,U, U ) --2 2 aiu2i +2 2 aiai+ gliUi+
i=1 i=1

j--2

2 f-iiui--/ailUi+l --alU21--aj--lU <0,
i--1

so C is negative definite. Similarly, so is C2. Thus maxa(C)=2a2.
Let (-, .) denote the usual complex inner product and (C)-{(Cz, z)lz C,llzll-

1). Since C is a real symmetric (hence Hermitian) matrix, )(C) is the convex hull of
a(C) [A2]. In particular, max3(C)=maxo(C). But C is the symmetrization of B, so
(Cz, z)- Re(Bz, z). Thus max.(C) max Re’)(B). But for any matrix B, o(B)=d(B).
Hence max Reo(B)_<max Re(B). Since B is known to have a unique real positive
eigenvalue , it follows that <_maxo(C)=2aj.

PROPOSITION A.5. Let A diag(a,..., aj_ 1, aj, aj_ 1,’" ", a ), with a > O, k =/=j and
aj<O. Assume that al>_a2>_. >--aj_ and that a_ +ak+ <2afor all k=2,...,j- 2.
Let V-(v,’",Vn) be the eigenvector of the unique positive eigenvalue of KA. Then
sgn vj- -sgnvgfor all k=/=j. Also, akVk <--ak+ lVk+ for k<_j-- 1.

Proof. The eigenvector V is a nontrivial solution to

(A.4) --(2a --x)t) + a2v2-- 0

ak-lt)k 1-- (2ak + A )t)k .o_ ak+ lVk+ ---0,

an_lVn_--(2an+,)vn=O.

If v >0, then v2 >0 by the first equation of (A.4). Also

2al +, 2a2+A(A.5) t)2---t)l >’" t)l >2t)l
a2 a2
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236 GEORGE BARD ERMENTROUT AND NANCY KOPELL

Furthermore,

(2ak+,)Vk--ak_lVk_
(A.6) v+--v= --v

ak+l

_2ak+X--ak+m
vk_ 2ak_-_-ak+lak+l

Now ,>0, ak>ak+ implies that (2ak+,--ak+l)/ak+l>l, k-2,...,j-2. Also,
a_/(2a+X-a+)<a_/(2a-a+)<l. (The last inequality is equivalent to

a_t +a+<2a wch holds by hypothesis.) Hence, from (A.6) we have

v+-v>v-v+
wch implies that sgnv sgn v , k 1,. ,j- 1. By symmet, v+ -v. Finally,
for k =j we see that

(A.7) aj_,vj_, +aj+,vj+,-(2aj+X)vj.
The left-hand side of (A.6) is positive, since v,, a, >0. By Proposition A.4, X12al.
Since a< 0, this implies that v<0.

To show that

(A.8) akvk<_ak+lvk+l, k- 1,... ,j- 1,

we first consider k =j- 1. By (A.7) and symmetry, 2aj_ 1vj_ m-(2a2+ X)v2<_2a2v2 (since, >0, vj< 0). For k- 1, (A.8) follows from (A.5). Also

ak+ lVk+ 1-- (2ak + ’ )vk- ak- lvk- >--akvk + ( akvk-- ak- lvk- )"

Thus, by induction, we have (A.8) for k 2,.. ,j- 2. []

PROPOSITION A.6. Let A diag(al,-.., a, a_ 1," ", am) with a O, ak> O, k =/=j. Let
Z--(z,... ,zn) be an eigenvector of any real eigenvalue < 0 of KA. Then for some k 1,

k2, sgnzk, =/= sgnzk2.
Proof. If for some kvj we have sgnzk =/: sgnzl, we are done. Otherwise consider

(A.4) with k-j:

aj_ Zj_ -- aj+ Zj+ kzj

Since aj._+_ > 0, t< 0, we have sgn zj 4: sgn zj._ 1. U]
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